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1 Introduction

Linear regression is a simple method of fitting a linear model to data. It is simple enough that there
exist closed form solutions on a given dataset.

In this paper, we present two methods of deriving the closed form expression: One using principles
from machine learning, and the other from abstract linear algebra.

2 Problem statement

We are given a set of N data points x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn), xi, yi ∈ R.

We have a model ŷi = mxi + b, where m, b ∈ R are parameters.

The loss of the model is L = Σ(ŷi − yi)
2, which is mean squared error or L2 loss.

The optimal model (i.e. choice of m, b) is that which minimizes L.

3 Applied method

In this method, we use principles from machine learning to solve for the ideal model as a closed form
expression.

3.1 Rewrite as matrix equation

First, we rewrite the expressions slightly to turn the loss into a single matrix expression.

Let u = (1, 1, ..., 1) be a vector of ones with length N . Then, our model is equivalent to ŷ = mx+ bu.

Let the matrix A =
[
x u

]
=

x1 u1

x2 u2

... ...

, i.e. the concatenation of the column vectors x and u. This

is the feature matrix (where the ”features” corresponding to the bias are one).

Let v =

[
m
b

]
be the column vector of the model’s parameters.

We can rewrite our model as ŷ = Av. Thus, our loss becomes L = (ŷ − y)2 =∥Av − y∥2. Notice how
we omit the summation, because all the indices are combined into one vector now.

In summary, we have 2 given vectors x, y (the data points), and 1 constant vector u (the vector of
ones). The model still has two scalar parameters m, b. m multiplies x, and b multiplies u. We write
the loss over the whole dataset as a single matrix equation.
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3.2 Finding the optimal parameters

The loss function is a positive quadratic equation, which is differentiable, has no points of inflection,
and has a single minimum. Therefore, we can take the derivative of the loss with respect to the
parameters to obtain the optimal model.

dL
dv = ( dL

dv1
, dL
dv2

, ..., dL
dvn

).

Because we are differentiating a scalar with respect to a vector, the result is the derivative of the scalar
with respect to each component of the vector. Remember that v = (m, b) will have two components.

Here, we will not separate the expressions component-wise, and instead use some results from matrix
calculus. See appendix for a more detailed derivation.

First, we expand the square in the loss. Then, we take the derivative of each term.

L =∥Av − y∥2 = (Av − y)⊺(Av − y) = (v⊺A⊺ − y⊺)(Av − y) = v⊺A⊺Av − v⊺A⊺y − y⊺Av + y⊺y

dL
dv = 2A⊺Av −A⊺y − y⊺A = 2A⊺Av − 2A⊺y = 0

We set this to zero to find the global minimum. Solving for v, we obtain

v = (A⊺A)−1(A⊺y)

3.3 More parameters

This method works with more than one input feature. Suppose each data sample has two features and
a ground truth: xi, wi, and yi.

Our linear model is ŷi = mxi + nwi + b.

To solve for the minimum, we still add a vector of ones u. The feature matrix

A =
[
x w u

]
=

x1 w1 u1

x2 w2 u2

... ... ...

.
The vector of parameters v =

[
m n b

]⊺
.

The closed form expression is still the same, as above.

In general, if we have N data points with k input features, our model will have k+ 1 parameters (one
for each feature, and a bias). The feature matrix will be shape (N, k + 1), and the parameter vector
will have k + 1 elements.

4 Abstract method

In this method, we use vector spaces and theorems from abstract linear algebra to find the ideal model.

4.1 Rewrite as vector spaces

Let V = RN . Similar to section 3.1, we rewrite the model as a vector equation in V .

Again, we define a vector of ones u = (1, 1, ..., 1) of length N . Thus, ŷ = mx + bu. The vectors
ŷ, y, x, u ∈ V .

Notice how ŷ is a linear combination of the vectors x and u. Let β = {x, u}, and the space spanned
W = span(β), a two (possibly one) dimensional subspace. Therefore, ŷ ∈ W .

This means that a given model’s predictions ŷ is a single vector in W , and W is the space of predictions
of all possible models given x.
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4.2 Orthogonal decomposition

Consider y, the ground truth. If y ∈ W , then it is possible for the model ŷ to fit the data exactly.
Otherwise, we want to find the model that minimizes the loss defined in section 2.

Notice how the loss, Σ(ŷi−yi)
2, is equivalent to∥ŷ − y∥2, like in section 3.1 (for those pedantic, this is

the standard L2 norm on RN ). Therefore, we are trying to find the prediction vector ŷ ∈ W ”closest”
to the ground truth y under the L2 norm.

By a theorem, a vector v ∈ V can be uniquely expressed as w+ z, where w ∈ W and z ∈ W⊥. W⊥ is
the orthogonal complement of W , defined as {p : p ⊥ w ∀w ∈ W}. a ⊥ b iff a · b = 0.

Additionally, the resulting w is the vector in W ”closest” to v; that is,∥w − v∥2 ≤∥a− v∥2 ∀a ∈ W .
See appendix for a proof.

Using this theorem, we decompose y as a sum ŷ+z. According to the theorem, the expression∥ŷ − y∥2,
which is also the loss, is minimized. This implies that ŷ under this decomposition is the best model.
z is the difference between the truth and the model’s predictions, which we don’t need.

4.3 Finding the optimal parameters

First, we need an orthonormal basis for W . Normalize u: uu = u/
√
N . Orthogonalize x with respect

to uu: x⊥ = x− (x · uu)uu = x− u
N

∑
xi.

5 Closed form

6 Appendix

6.1 Matrix calculus

The derivative of a scalar with respect to a vector, as was used with the loss function, is defined as:

dL
dv = ( dL

dv1
, dL
dv2

, ...)

Similar to multivariable calculus, the components of v are independent variables; thus, the derivative
of any one of them w.r.t. another one is zero, and w.r.t itself is one.

We can derive some simple derivatives by expanding the indices. Many formulas are quite similar to
their scalar calculus counterparts.

d
dv (

∑
vi) =

d
dv (v1 + v2 + ...) = (1, 1, ...)

d
dv (v · v) =

d
dv (v

⊺v) = d
dv (v

2
1 + v22 + ...) = (2v1, 2v2, ...) = 2v

The derivative of a vector w.r.t. scalar, vector w.r.t. vector, matrix w.r.t. scalar, scalar w.r.t. matrix
also exist. In general, the derivative of an n dimensional quantity w.r.t. an m dimensional quantity is
n+m dimensional, to account for all the combinations of components.

For example, vector w.r.t vector is an N by M dimensional matrix:

du
dv =

du1

dv1

du1

dv2
...

du2

dv1

du2

dv2
...

... ... ...

 (or it’s transpose, depending on convention).

d
dv (Av) =

d
dv (

∑
A1ivi,

∑
A2ivi, ...)

⊺ =

A11 A12 ...
A21 A22 ...
... ... ...

 = A

6.2 Orthogonal decomposition

Let V be a vector space with an inner product and induced norm. Let W be a subspace, and β be an
orthonormal basis for W .
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Any vector v ∈ V can be uniquely expressed as w + u, where w ∈ W and u ∈ W⊥. Additionally,
∥w − v∥ ≤∥x− v∥ ∀x ∈ W .

w =
∑

projβi
(v) =

∑
(v · βi)βi (because βi is normal). u = v − w.
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